Binary Composition

Core Course –06 Semestar - III Paper : Group Theory –I Lesson: Binary Composition Lesson Developer : Sukhendu Roy Department/ College : Department of Mathematics , Mankar College, Burdwan University

Binary Composition

Table of Contents

- **Chapter :** Binary Composition
- 1: Introduction
- 2: Objectives
- 3: Binary Operation
- 4: Examples of Binary Opeartion
- 5: Laws of Binary Operations
 - 5.1 : Commutative Property
 - 5.2: Associative Property
 - 5.3: Distributive Property
 - 5.4: Cancellation Laws
 - 5.5: Composition Table
 - 5.6 Examples of Cayley (Composition) Table
- 6: Miscellaneous Problems
- Learning Outcomes
- Exercise
- Reference
- 1. Introduction: In Mathematics, a binary operation on a set G is simply a calculation which combines two elements of the set (called operands) to produce another element of the set. In other words a binary operation on a set is simply a method or formula by which the members of an ordered pair from a set(Say G) combine to yield a new member of G. The most familiar binary operations are ordinary addition, subtraction, multiplication of integers.
- 2. Objectives: After studying this chapter you should be able to :
 - Define binary operation
 - State the laws of operations
 - Cayley(Composition) Table
 - Solve the related problems for different examinations

3. Binary Operation:

Defination: Let A be a non empty Set and A x A ={(a,b) : $a \in A, b \in A$ }. A binary composition(or operation) on A is a mapping f: $A \times A \rightarrow A$. Therefore a binary operation f assigns a definite element of A to each ordered pair of elements of A & this mapping is generally denoted by the symbol ' o '.

The symbols like * , \bigcirc , \oplus , \bullet are also used to denote a binary operation.

Important Points to remember :

- I. If a Set A contains n elements , then the number of binary operations on A are n^{n^2}
- II. Division of integers is not a binary operation on the integers since an integer divided by an integer need not be an integer.
- III. If a & b are any two elements of A then image of (a,b) under the binary operation o denoted by aob. If a,b,c be three elements of A then the image of (a,(b,c)) under binary operation o is denoted by ao (boc)

IV. Let A be a nonempty Set. A binary operation ' o ' on A is said to be defined if a o $b \in A \forall a, b \in A$. In this Case the set A is said to be closed under (or closed with respect to) the binary composition ' o '

4. Examples of Binary Operation :

- On the Set ℤ, let o stands for the binary operation '+'(addition) then 3 o 2 = 5 for 3,2 ∈ ℤ
- On the Set ℝ, let o stand for the binary operation ' Subtraction' then 2 o 3 = -1 for 2,3 ∈ ℝ
- ★ Let a binary operation * be defined on the set Q by a*b $= \frac{ab}{3}$ then 3*5 = 5, 3*8 = 24 for 3, 5, 8 ∈ Q
- The Set N is not closed under 'subtraction', since for some a, b ∈ N, a-b does not belongs to N always e.g
 2,3 ∈ N but 2-3 = -1 ∉ N

5. Laws Of Binary Operations:

5.1 Commutative Property: Let A be a non empty set .A binary operation o on A is said to be commutative if aob = boa $\forall a, b \in A$. **Examples**:

- 1) If o stand for binary operation '- ' on \mathbb{N} then $aob \neq boa \forall a, b \in \mathbb{N}$
- 2) If o stand for binary operation '+ ' on \mathbb{R} then aob = boa $\forall a, b \in \mathbb{R}$
- 3) If o stand for binary operation ' . ' on \mathbb{R} then aob = boa $\forall a, b \in \mathbb{R}$
- 5.2 Associative Property : Let A be a non emty set.

A binary operation o on A is said to be associative if ao(boc)= (aob)oc $\forall a, b, c \in A$

Examples:

- 1) If o stands for the binary operation '+' on \mathbb{R} then ao(boc) = (aob)oc $\forall a, b, c \in \mathbb{R}$
- 2) If o stands for the binary operation '-' on \mathbb{N} then ao(boc) $\neq (aob)oc \forall a, b, c \in \mathbb{N}$
- 3) If o stands for binary operation ' . ' then it is associative over \mathbb{Z} , \mathbb{Q} & C
- **5.3 Distributive Property :** Let A be a non empty set. Let o & * be two binary operations on A. Now the binary operation o on A is said to be left distributive over * if $ao(b*c)=(aob)*(aoc) \forall a, b, c \in A$ & right distributive over * if $(b*c) \circ a = (boa) *(coa) \forall a, b, c \in A$

Examples:

- If o stands for binary operation '. ' and * stands for binary operation ' + ' on ℝ then binary operation o is distributive over *
- If o stands for binary operation ' + ' and * stands for binary operation ' • ' on ℝ then binary operation o is not distributive over * for ℝ
- **5.4 Cancellation Laws :** Let A be a non empty set. A binary operation o on A is said to satisfy the cancellation law given below:
 - Left Cancellation Law : a o b = a o c \Rightarrow b = c $\forall a, b, c \in A$
 - Right Cancellation Law : b o a = c o a $\forall a, b, c \in A$

Examples:

- a) If o stand for binary operation ' ' on N then it satisfy the left & right cancellation law
- b) If o stand for binary operation ' ' on ℝ then it does not satisfy the left & right cancellation law over ℝ. Also if o stand for

the binary operation ' $\, \bullet \,$ ' then it does not satisfy the cancellation law over $\mathbb Z$, $\mathbb Q \ \& \ C$

5.5 Composition (Cayley) Table : A cayley table ,after 19th century British mathematician Arthur Cayley describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table.

Let A be a non empty finite set then a binary composition o on the set A can be defined in tabular form which is called cayley table (or composition table)

Let G = { $a_1, a_2, a_3, \dots, a_n$ } be the set of n elements. These n elements are to be listed across the top & at the left of table in same order. Here $a_i o a_j$ appears on the table in i-th row & j-th column as given in the table below.

0	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃		a_n
<i>a</i> ₁	$a_1 o a_1$	$a_1 o a_2$	$a_1 o a_3$		$a_1 o a_n$
<i>a</i> ₂	$a_2 0 a_1$	$a_2 0 a_2$	$a_2 0 a_3$		$a_2 o a_n$
<i>a</i> ₃	$a_3 \circ a_1$	a30a2	a30a3		$a_3 o a_n$
•	2/	K	ĥ	1	
a_n	$a_n \circ a_1$	$a_n o a_2$	$a_n o a_3$		$a_n o a_n$

A118	Important Points to remember :
*	If the Cayley table is symmetric about its principal Diagonal
	then binary operation o is called commutative.
*	If the set A contains n elements, then the elements are
	arranged in n^2 entries into n-rows & n columns . They are also
	elements of A since A is closed under binary operation o .
*	The binary operation addition modulo n & multiplication
111	modulo n on the set {0,1,2,3,n-1} which we denote by \mathbb{Z}_n
	play an important role in abstract algebra.

5.6 Examples of Cayley Table :

The table for the binary composition ' addition modulo 3 ' on the set \mathbb{Z}_3 is given as follows :

 \mathbb{Z}_3 = the set of all residue classes of modulo 3 = { $\overline{0}$, $\overline{1}$, $\overline{2}$ }

+3	$\overline{0}$	Ī	2
ō	$\overline{0}$	1	2
1	1	2	$\overline{0}$
2	2	$\overline{0}$	1

Here the Composition Table shows that the Composition is commutative.

II. Let G = { 1, ω , ω^2 } be the set of all cube roots of unity and the multiplication as a binary operation defined on G. Here all the elements are arranged in $3^2 = 9$ entries into 3 rows & 3 columns and they are also the elements of G. Now the composition table for the binary operation ' multiplication ' on the Set G is given as follows :

	1	(1)	ω^2
•	1	(i)	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

Here the above multiplication table is symmetric about its principal diagonal. So the binary operation multiplication is commutative on G.

III. The table for the binary composition ' multiplication modulo 5 ' on the set \mathbb{Z}_5 is given as follows :

 \mathbb{Z}_5 = the set of all residue classes of modulo 5 = { $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$ }

\times_5	$\overline{0}$	1	2	3	4
$\overline{0}$	ō	Ō	Ō	Ō	ō
1	ō	1	2	3	$\overline{4}$
2	ō	2	4	1	3
3	ō	3	1	$\overline{4}$	2
4	$\overline{0}$	4	3	2	1

6. Miscellaneous Problems :

Problem 1 :

A binary operation o is defined on \mathbb{R} , the set of real numbers by a o b = a+ 2b $\forall a, b \in \mathbb{R}$. Is the binary operation o is commutative & associative ? Justify

Solution :

Step 1 : To examine commutativity let us take $a, b \in \mathbb{R}$ then aob = a+2b and boa = b+2a. Therefore $ao b \neq boa$ e.g let us take $1, 2 \in \mathbb{R}$. Here $1 \circ 2 = 1 + 2 \times 2 = 5$ for $1, 2 \in \mathbb{R}$

and 2 o1 =2 + 2× 1 = 4 for 1, 2 $\in \mathbb{R}$. Therefore 1o2 \neq 2o1 Hence 'o' is not commutative on \mathbb{R} .

Step 2 : To examine associativity let us take a,b, $c \in \mathbb{R}$. Then ao(boc) = a o (b+2c) = a + 2 × (2 + 2c) = a + 4c + 4 and (aob) o c = (a+2b) o c = a+2b+2c. Therefore a o (b o c) \neq (aob)oc e.g let us take 2,4,5 $\in \mathbb{R}$. Then 2 o (4 o 5) = 2 o (4+2×5) = 2 o 14

= 2 + 2 × 14 = 30. Now (2 o 4) o 5 = (2 + 2× 4)o5 = 10 o 5 = 10 + 2 × 5 = 20. Hence 2 o (4 o 5) ≠ (2 o 4) o 5. Therefore ' o ' is also not associative on \mathbb{R} .

Problem 2 :

	A binary operation o is defined on $\mathbb R$, the set of real
	numbers by a o b = $ ab \forall a, b \in \mathbb{R}$. Is the binary
	operation o is commutative & associative ? Justify
Solution :	Here the binary operation o is defined on $\mathbb R$ by
	$a \circ b = ab \forall a, b \in \mathbb{R}$

Step 1 : To examine the commutativity let us take $a, b \in \mathbb{R}$. Here a o b = |ab| $\forall a, b \in \mathbb{R}$ & b o a = |ba| $\forall a, b \in \mathbb{R}$. i.e a o b = b o a $\forall a, b \in \mathbb{R}$ Therefore ' o ' is commutative on \mathbb{R}

Step 2: To examine associativity let us take a , b, $c \in \mathbb{R}$ Here a o (b o c) = a o |bc| = |a |bc| | = |abc| $\forall a, b, c \in \mathbb{R}$ Again (a o b) o c = |ab| o c = | |ab| c| = |abc| $\forall a, b, c \in \mathbb{R}$. Therefore a o (b o c) = $(aob)oc \forall a, b, c \in \mathbb{R}$ Hence ' o ' is also associative on \mathbb{R}

Problem 3 :

A binary operation o is defined on \mathbb{Z} , the set of integers by a o b = a+b+1 $\forall a, b \in \mathbb{Z}$. Is the binary operation o is commutative & associative ? Justify

Solution : Here the binary operation o is defined on \mathbb{Z} by $a \circ b = a + b + 1 \quad \forall a, b \in \mathbb{Z}$

Step 1 : To examine the commutativity let us take $a, b \in \mathbb{Z}$ Here a o b =a + b +1 $\forall a, b \in \mathbb{Z}$ and b o a = b + a + 1 = a +b +1 i.e a o b = b o a $\forall a, b \in \mathbb{Z}$. Therefore 'o ' is Commutative on \mathbb{Z} . **Step 2 :** To examine associativity let us take a , b, $c \in \mathbb{Z}$. Then a o (b o c) = a o (b + c + 1) = a + (b + c + 1) + 1 = $a + b + c + 2 \quad \forall a, b, c \in \mathbb{Z}$. Again (a o b) o c = (a + b + 1) o c = (a + b + 1) + c + 1 = $a + b + c + 2 \quad \forall a, b, c \in \mathbb{Z}$. Hence 'o 'is also associative on \mathbb{Z} .

Problem 4 :

A binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by (a, b) o (c, d) = (a-c, b-d); \forall (a, b), (c, d) $\in \mathbb{Z} \times \mathbb{Z}$. Is the binary operation o is commutative & associative ? Justify.

Solution : Here the binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by (a, b) o (c, d) = (a-c, b-d); \forall (a, b), (c, d) $\in \mathbb{Z} \times \mathbb{Z}$.

Step 1 : To examine the commutativity let us take $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$. Then by defination $(a, b) \circ (c, d) = (a - c, b - d) \& (c, d) \circ (a, b) = (c - a, d - b) = (-(a - c), -(b - d))$ Therefore $(a, b) \circ (c, d) \neq (c, d) \circ (a, b) \forall (a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$. This shows that ' o ' is not commutative on $\mathbb{Z} \times \mathbb{Z}$

Step 2 : To examine associativity let us take $(a, b), (c, d), (e, f) \in \mathbb{Z} \times \mathbb{Z}$. Then $(a, b) \circ \{(c, d) \circ (e, f)\} = (a, b) \circ \{(c-e, d-f)\}$ [by defination] = (a - c + e, b - d + f) [by defination] Again $\{(a, b) \circ (c, d)\} \circ (e, f) = (a - c, b - d) \circ (e, f)$ = (a - c - e, b - d - f)Hence $(a, b) \circ \{(c, d) \circ (e, f)\} \neq \{(a, b) \circ (c, d)\} \circ (e, f) (a, b), (c, d), (e, f) \in \mathbb{Z} \times \mathbb{Z}$. Therefore 'o ' is also not associative on $\mathbb{Z} \times \mathbb{Z}$.

Problem 5 : A binary operation o is defined on \mathbb{Q} , the set of rational no. by a o b = $ab+1 \forall a, b \in \mathbb{Q}$. Is the binary operation o is commutative & associative ? Justify.

Solution : Here the binary operation o is defined on \mathbb{Q} by $a \circ b = ab + 1 \quad \forall a, b \in \mathbb{Q}$ **Step 1 :** To examine the commutativity let us take $a, b \in \mathbb{Q}$. Then $a \circ b = ab + 1 = ba + 1$ [since $ab = ba \forall a, b \in \mathbb{Q}$] $= b \circ a$ Thus $a \circ b = b \circ a \forall a, b \in \mathbb{Q}$. Hence ' \circ ' is commutative on \mathbb{Q} .

> **Step 2 :** To examine associativity let us take a , b, $c \in \mathbb{Q}$. Then a o (b o c) = a o (bc +1) = a (bc +1) +1 = abc + a +1 $\forall a$, b, $c \in \mathbb{Q}$. Again we have (a o b) o c = (ab + 1) o c = (ab + 1)c + 1 = abc + c + 1

 $\forall a, b, c \in \mathbb{Q}$. Hence $a \circ (b \circ c) \neq (a \circ b) \circ c \quad \forall a, b, c \in \mathbb{Q}$. Therefore it proves that 'o ' is not associative on \mathbb{Q} .

Problem 6 :

A binary operation o is defined on $M_2(\mathbb{R})$, the set of all 2×2 matrices whose elements are real numbers by A o B = $\frac{1}{2}(AB - BA) \forall A$, $B \in M_2(\mathbb{R})$. Is the binary operation o is commutative & associative ? Justify.

Solution : Here the binary operation o is defined on $M_2(\mathbb{R})$ by A o B = $\frac{1}{2}(AB - BA) \forall A, B \in M_2(\mathbb{R})$. **Step 1**: To examine the commutativity let us take A, $B \in M_2(\mathbb{R})$ Then A o B = $\frac{1}{2}(AB - BA) \forall A, B \in M_2(\mathbb{R})$ and B o A = $\frac{1}{2}(BA^2 - AB) = -\frac{1}{2}(AB - BA) \forall A, B \in M_2(\mathbb{R})$ Therefore A o B \neq B o A \forall A, B \in $M_2(\mathbb{R})$. Hence 'o' is not commutative on $M_2(\mathbb{R})$ **Step 2**: To examine associativity let us take A, B, $C \in M_2(\mathbb{R})$. Then A o (B o C) = A o $\frac{1}{2}$ (BC - CB) = $\frac{1}{2} \left[\frac{1}{2} A (BC - CB) - \frac{1}{2} (BC - CB) A \right]$ $=\frac{1}{4}\left[A(BC-CB)-(BC-CB)A\right]$ $=\frac{1}{4} [ABC - ACB - BCA + CBA]$ Again (A o B) o C = $\frac{1}{2}$ (AB - BA) o C = $\frac{1}{2} \left[\frac{4}{2} (AB - BA)C - \frac{1}{2}C(AB - BA) \right]$ = $\frac{1}{4} \left[(AB - BA)C - C(AB - BA) \right]$ = $\frac{1}{4} \left[ABC - BAC - CAB + CBA \right]$ $\neq \frac{1}{4} \left[ABC - ACB - BCA + CBA \right];$ [since matrix multiplication is not commutative in general] Therefore $A \circ (B \circ C) \neq (A \circ B) \circ C \quad \forall A, B, C \in M_2(\mathbb{R})$. Hence 'o ' is not associative on $M_2(\mathbb{R})$.

• The following table will give Comprehensive ideas :

SL.NO	The Given Binary Operation	Nature of Binary operation	
		Commutativity	Associativity
1	A binary operation o is defined on \mathbb{R} by a o b = a+	NO	NO
	$2b \forall a, b \in \mathbb{R}$		
2	A binary operation o is defined on \mathbb{R} by a o b =	Yes	Yes
	$ ab \forall a, b \in \mathbb{R}.$		
3	A binary operation o is defined on \mathbb{Z} by a o b =	Yes	Yes
	$a+b+1 \forall a, b \in \mathbb{Z}$.		

4	A binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by (a, b)	No	NO
	o (c,d) = (a-c, b-d) \forall (a,b), (c,d) $\in \mathbb{Z} \times \mathbb{Z}$.		
5	A binary operation o is defined on \mathbb{Q} by a o b =	Yes	NO
	$ab+1 \forall a, b \in \mathbb{Q}$		
6	A binary operation o is defined on $M_2(\mathbb{R})$ by A o	NO	NO
	$B = \frac{1}{2}(AB - BA) \forall A, B \in M_2(\mathbb{R})$		

Problem 7 :

Let 'o ' be an associative binary Composition on a Set S. Let T be a subset of S defined by $T = \{a \in S : aox = xoa \forall x \in S \}$. Prove that T is closed under 'o '.

Solution : Here by given Condition c we have $a \circ x = x \circ a \& b \circ x = x \circ b \forall x \in S$ Now we have to Prove that T is closed under ' o ' i.e for a, b $\in T$ $\Rightarrow aob \in T$ Now $(aob) \circ x = a \circ (b \circ x)$ [since o is associative] $\Rightarrow (aob) \circ x = a \circ (x \circ b)$ [since b $\circ x = x \circ b \forall x \in S$] $\Rightarrow (aob) \circ x = (a \circ x) \circ b$ [since o is associative] $\Rightarrow (aob) \circ x = (x \circ a) \circ b$ [since a $\circ x = x \circ a \forall x \in S$] $\Rightarrow (aob) \circ x = x \circ (a \circ b)$ [since o is associative] Thus we have $(aob) \circ x = x \circ (a \circ b)$ [since o is associative] Thus we have $(aob) \circ x = x \circ (a \circ b) \forall x \in S$. This implies that $aob \in T$ aob $\in T$. Therefore T is closed under 'o'.

Problem 8 :

Let S be a Set of two elements . How many different binary Compositions can be defined on S ? How many different Commutative binary compositions can be defined on S ?

Solution : Here it is given that S be a set of two elements. Now we know that the number of different binary compositions defined on S be n^{n^2} where n denotes number of elements.

Therefore the total no. Of different binary compositions defined On the Set $S = 2^{2^2} = 2^4 = 16$ [Since here n = 2]

✤ The total number of different commutative binary Compositions defined on the set S be $n^{\frac{n(n+1)}{2}} = 2^{\frac{2(2+1)}{2}} = 2^3 = 8$ [Since here n = 2]

Learning Outcomes :

- The associativity & the Commutativity are independent of each other.
- If G contains n elements then the number of binary operations on G are n^{n^2}
- If a set G contains n elements , then the number of commutative binary operations on G are $n^{\frac{n^2+n}{2}}$
- If a set G contains n elements , then the number of noncommutative binary operations on G are $n^{n^2} - n^{\frac{n^2+n}{2}}$.

Exercise :

- Prove or disprove : Every binary operation on a Set S is both commutative & associative iff S has exactly one element.
- 2. Examine the composition 'o' defined on the given set are i) commutative ii) associative .
 - (a) 'o' on \mathbb{R} defined by as $b = |a| + |b| \forall a, b \in \mathbb{R}$.
 - (b) 'o' on \mathbb{N} , the set of all natural numbers by a o b = L.C.M of a & b $\forall a, b \in \mathbb{N}$
 - (c) 'o' on \mathbb{N} , the set of all natural numbers by a o b = gcd (a, b) $\forall a, b \in \mathbb{N}$
 - (d) 'o' on \mathbb{N} , the set of all natural numbers by a o b = max (a, b) $\forall a, b \in \mathbb{N}$
 - (e) 'o' on \mathbb{Z} , the set of all integers by a o b = a + b - ab $\forall a, b \in \mathbb{Z}$
- 3. Prove or disprove : Every Commutative binary operation on a set G containing two elements is associative.
- 4. Let S be a set of 5 elements . How many different commutative & non-commutative binary compositions can be defined on the set S ?

Reference :

- 1. Joseph A. Gallian , Contemporary Abstract Algebra , 4th Ed. , 1999
- 2. M K Sen , Shamik Ghosh , Parthasarathi Mukhopadhyay & Sunil Kumar Maity , Topics in abstract Algebra, Third Edition.
- 3. S K Mapa , Higher Algebra (Abstract & Linear).