Core Course -06

Semestar - III Paper: Group Theory -I
Lesson: Binary Composition
Lesson Developer: Sukhendu Roy
Department/ College : Department of Mathematics, Mankar College, Burdwan University

Binary Composition

Table of Contents

- Chapter : Binary Composition
- 1: Introduction
- 2: Objectives
- 3: Binary Operation
- 4: Examples of Binary Opeartion
- 5: Laws of Binary Operations
5.1 : Commutative Property
5.2: Associative Property
5.3: Distributive Property
5.4: Cancellation Laws
5.5: Composition Table
5.6 Examples of Cayley (Composition) Table
- 6: Miscellaneous Problems
- Learning Outcomes
- Exercise
- Reference

1. Introduction: In Mathematics, a binary operation on a set G is simply a calculation which combines two elements of the set (called operands) to produce another element of the set. In other words a binary operation on a set is simply a method or formula by which the members of an ordered pair from a set(Say G) combine to yield a new member of G. The most familiar binary operations are ordinary addition, subtraction, multiplication of integers.
2. Objectives: After studying this chapter you should be able to :

* Define binary operation
* State the laws of operations
* Cayley(Composition) Table
* Solve the related problems for different examinations

3. Binary Operation:

Defination: Let A be a non empty Set and $\mathrm{A} \times \mathrm{A}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in A, b \in A\}$. A binary compostion(or operation) on A is a mapping $\mathrm{f}: \mathrm{A} \times A \rightarrow A$. Therefore a binary operation f assigns a definite element of A to each ordered pair of elements of $A \&$ this mapping is generally denoted by the symbol ${ }^{\prime} o^{\prime}$.
The symbols like *, \odot, \oplus, . are also used to denote a binary operation.

Important Points to remember :

I. If a Set A contains n elements, then the number of binary operations on A are $n^{n^{2}}$
II. Division of integers is not a binary operation on the integers since an integer divided by an integer need not be an integer.
III. If $a \& b$ are any two elements of A then image of (a, b) under the binary operation o denoted by aob. If a, b, c be three elements of A then the image of $(a,(b, c))$ under binary operation o is denoted by ao (boc)
IV. Let A be a nonempty Set. A binary operation ' o ' on A is said to be defined if $\mathrm{a} \mathrm{o} \mathrm{b} \in A \forall a, b \in A$. In this Case the set A is said to be closed under (or closed with respect to) the binary composition 'o'

4. Examples of Binary Operation :

* On the Set \mathbb{Z}, let o stands for the binary operation ' + ' $($ addition) then 3 o $2=5$ for $3,2 \in \mathbb{Z}$
* On the Set \mathbb{R}, let o stand for the binary operation ' Subtraction' then 2 o $3=-1$ for $2,3 \in \mathbb{R}$
* Let a binary operation * be defined on the set \mathbb{Q} by a*b $=\frac{a b}{3}$ then $3 * 5=5,3 * 8=24$ for $3,5,8 \in \mathbb{Q}$
* The Set \mathbb{N} is not closed under ' subtraction' , since for some $\mathrm{a}, \mathrm{b} \in \mathbb{N}, \mathrm{a}-\mathrm{b}$ does not belongs to \mathbb{N} always e.g $2,3 \in \mathbb{N}$ but $2-3=-1 \notin \mathbb{N}$

5. Laws Of Binary Operations:
5.1 Commutative Property: Let A be a non empty set .A binary operation o on A is said to be commutative if aob $=$ boa $\forall a, b \in A$.

Examples:

1) If o stand for binary operation '- ' on \mathbb{N} then aob $\neq b o a$ $\forall a, b \in \mathbb{N}$
2) If o stand for binary operation '+ ' on \mathbb{R} then $a o b=$ boa $\forall a, b \in \mathbb{R}$
3) If o stand for binary operation ' . ' on \mathbb{R} then aob = boa $\forall a, b \in \mathbb{R}$
5.2 Associative Property : Let A be a non emty set.

A binary operation o on A is said to be associative if ao(boc)= (aob)oc $\forall a, b, c \in A$

Examples:

1) If o stands for the binary operation ' + ' on \mathbb{R} then ao(boc) = (aob) oc $\forall a, b, c \in \mathbb{R}$
2) If o stands for the binary operation ' - ' on \mathbb{N} then $a \mathrm{o}(\mathrm{boc}) \neq(a o b) o c \forall a, b, c \in \mathbb{N}$
3) If o stands for binary operation ' . ' then it is associative over $\mathbb{Z}, \mathbb{Q} \& C$
5.3 Distributive Property : Let A be a non empty set. Let o \& * be two binary operations on A. Now the binary operation o on A is said to be left distributive over * if ao(b*c)=(aob)*(aoc) $\forall a, b, c \in A$ \& right distributive over * if ($\mathrm{b}^{*} \mathrm{c}$) $\mathrm{o} \mathrm{a}=(\mathrm{boa}) *(\mathrm{coa}) \quad \forall a, b, c \in A$

Examples:

- If o stands for binary operation '. 'and * stands for binary operation ' + ' on \mathbb{R} then binary operation o is distributive over *
- If o stands for binary operation ' + ' and * stands for binary operation '. on \mathbb{R} then binary operation o is not distributive over * for \mathbb{R}

5.4 Cancellation Laws : Let A be a non empty set. A binary operation o

 on A is said to satisfy the cancellation law given below:- Left Cancellation Law : $\mathrm{a} \circ \mathrm{b}=\mathrm{a} \circ \mathrm{c} \Rightarrow b=c$ $\forall a, b, c \in A$
- Right Cancellation Law : boa=coa $\forall a, b, c \in A$

Examples:

a) If o stand for binary operation ' . 'on \mathbb{N} then it satisfy the left \& right cancellation law
b) If o stand for binary operation ' . ' on \mathbb{R} then it does not satisfy the left \& right cancellation law over \mathbb{R}. Also if o stand for the binary operation ' . ' then it does not satisfy the cancellation law over $\mathbb{Z}, \mathbb{Q} \& C$
5.5 Composition (Cayley) Table : A cayley table , after $19^{\text {th }}$ century British mathematician Arthur Cayley describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table.

Let A be a non empty finite set then a binary composition o on the set A can be defined in tabular form which is called cayley table (or composition table)

Let $\mathrm{G}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right.$..$\left.a_{n}\right\}$ be the set of n elements.These n elements are to be listed across the top \& at the left of table in same order. Here $a_{i} o a_{j}$ appears on the table in i-th row $\& j$-th column as given in the table below.

0	a_{1}	a_{2}	a_{3}	$\ldots \ldots .$.	a_{n}
a_{1}	$a_{1} o a_{1}$	$a_{1} o a_{2}$	$a_{1} o a_{3}$	$\ldots \ldots \ldots \ldots \ldots$	$a_{1} o a_{n}$
a_{2}	$a_{2} o a_{1}$	$a_{2} o a_{2}$	$a_{2} o a_{3}$	$\ldots \ldots \ldots \ldots \ldots .$.	$a_{2} o a_{n}$
a_{3}	$a_{3} o a_{1}$	$a_{3} o a_{2}$	$a_{3} o a_{3}$	$\ldots \ldots \ldots \ldots \ldots$.	$a_{3} o a_{n}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
a_{n}	$a_{n} o a_{1}$	$a_{n} o a_{2}$	$a_{n} o a_{3}$	$\ldots \ldots \ldots \ldots \ldots .$.	$a_{n} o a_{n}$

Important Points to remember :

5.6 Examples of Cayley Table :

I. The table for the binary composition ' addition modulo 3 ' on the set \mathbb{Z}_{3} is given as follows:
$\mathbb{Z}_{3}=$ the set of all residue classes of modulo $3=\{\overline{0}, \overline{1}, \overline{2}\}$

$+_{3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$

Here the Composition Table shows that the Composition is commutative.
II. Let $G=\left\{1, \omega, \omega^{2}\right\}$ be the set of all cube roots of unity and the multiplication as a binary operation defined on G. Here all the elements are arranged in $3^{2}=9$ entries into 3 rows \& 3 columns and they are also the elements of G . Now the composition table for the binary operation ' multiplication ' on the Set G is given as follows :

\cdot	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω^{2}	ω^{2}	1	ω

Here the above multiplication table is symmetric about its principal diagonal. So the binary operation multiplication is commutative on G.
III. The table for the binary composition ' multiplication modulo 5 ' on the set \mathbb{Z}_{5} is given as follows:
$\mathbb{Z}_{5}=$ the set of all residue classes of modulo 5
$=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

\times_{5}	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{1}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

6. Miscellaneous Problems :

Problem 1 :
A binary operation o is defined on \mathbb{R}, the set of real numbers by a o $\mathrm{b}=\mathrm{a}+2 \mathrm{~b} \forall a, b \in \mathbb{R}$. Is the binary operation o is commutative \& associative ? Justify

Solution :

Step 1 : To examine commutativity let us take $a, b \in \mathbb{R}$ then $\mathrm{aob}=\mathrm{a}+2 \mathrm{~b}$ and $\mathrm{boa}=\mathrm{b}+2 \mathrm{a}$. Therefore $\mathrm{ao} \mathrm{b} \neq b o a$
e.g let us take $1,2 \in \mathbb{R}$. Here $1 \circ 2=1+2 \times 2=5$ for $1,2 \in \mathbb{R}$
and 2 o1 $=2+2 \times 1=4$ for $1,2 \in \mathbb{R}$. Therefore $102 \neq 2 o 1$ Hence ' o ' is not commutative on \mathbb{R}.

Step 2 : To examine associativity let us take $a, b, c \in \mathbb{R}$. Then ao(boc) $=\mathrm{a} \circ(\mathrm{b}+2 \mathrm{c})=\mathrm{a}+2 \times(2+2 c)=a+4 c+4$ and $(\mathrm{aob}) \circ \mathrm{c}=$ $(a+2 b) \circ c=a+2 b+2 c$.
Therefore a o (b oc) $\neq(a o b) o c$
e.g let us take $2,4,5 \in \mathbb{R}$. Then $2 \circ(4 \circ 5)=2 \circ(4+2 \times 5)=2 \circ 14$
$=2+2 \times 14=30$. Now (2 ○ 4) $\circ 5=(2+2 \times 4) o 5=10 \circ 5=10+$ $2 \times 5=20$.
Hence $2 \circ(4 \circ 5) \neq(2 \circ 4) \circ 5$.
Therefore ' o ' is also not associative on \mathbb{R}.

Problem 2:

A binary operation o is defined on \mathbb{R}, the set of real numbers by a o $\mathrm{b}=|\mathrm{ab}| \forall a, b \in \mathbb{R}$. Is the binary operation o is commutative \& associative ? Justify
Solution: Here the binary operation o is defined on \mathbb{R} by a o $\mathrm{b}=|\mathrm{ab}| \forall a, b \in \mathbb{R}$

Step 1 : To examine the commutativity let us take $a, b \in \mathbb{R}$.
Here $\mathrm{a} \circ \mathrm{b}=|\mathrm{ab}| \forall a, b \in \mathbb{R} \quad \& \quad \mathrm{~b} \circ \mathrm{a}=|\mathrm{ba}|$ $\forall a, b \in \mathbb{R}$. i.e a ob $\mathrm{b}=\mathrm{b}$ oa $\forall a, b \in \mathbb{R}$ Therefore ' o ' is commutative on \mathbb{R}

Step 2 : To examine associativity let us take $a, b, c \in \mathbb{R}$
Here a o $(b \circ c)=a \circ|b c|=|a| b c| |=|a b c|$
$\forall a, b, c \in \mathbb{R}$
Again ($\mathrm{a} \circ \mathrm{ob}$) $\circ \mathrm{c}=|\mathrm{ab}| \circ \mathrm{c}=||\mathrm{ab}| \mathrm{c}|=|\mathrm{abc}|$
$\forall a, b, c \in \mathbb{R}$. Therefore a o (boc) $=(a o b)$ oc $\forall a, b, c \in \mathbb{R}$ Hence ' o ' is also associative on \mathbb{R}

Problem 3 :
A binary operation o is defined on \mathbb{Z}, the set of integers by a o $\mathrm{b}=\mathrm{a}+\mathrm{b}+1 \forall a, b \in \mathbb{Z}$. Is the binary operation o is commutative \& associative ? Justify

Solution : Here the binary operation o is defined on \mathbb{Z} by $\mathrm{a} \circ \mathrm{b}=\mathrm{a}+\mathrm{b}+1 \quad \forall a, b \in \mathbb{Z}$

Step 1 : To examine the commutativity let us take $a, b \in \mathbb{Z}$ Here $\mathrm{a} \mathrm{o} \mathrm{b}=\mathrm{a}+\mathrm{b}+1 \forall a, b \in \mathbb{Z}$ and $\mathrm{b} \circ \mathrm{a}=\mathrm{b}+\mathrm{a}+1=$ $\mathrm{a}+\mathrm{b}+1$ i.e $\mathrm{a} \circ \mathrm{o}=\mathrm{b}$ o a $\forall a, b \in \mathbb{Z}$. Therefore ' o ' is Commutative on \mathbb{Z}.

Step 2 : To examine associativity let us take $a, b, c \in \mathbb{Z}$.
Then $a \circ(b \circ c)=a \circ(b+c+1)=a+(b+c+1)+1=$ $\mathrm{a}+\mathrm{b}+\mathrm{c}+2 \quad \forall a, b, c \in \mathbb{Z}$.
Again ($\mathrm{a} \circ \mathrm{b}$) oc $=(\mathrm{a}+\mathrm{b}+1)$ $\circ \mathrm{c}=(\mathrm{a}+\mathrm{b}+1)+\mathrm{c}+1=$ $\mathrm{a}+\mathrm{b}+\mathrm{c}+2 \quad \forall a, b, c \in \mathbb{Z}$. Hence ' o ' is also associative on \mathbb{Z}.

Problem 4 :

A binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by $(a, b) \circ(c$ $, \mathrm{d})=(\mathrm{a}-\mathrm{c}, \mathrm{b}-\mathrm{d}) ; \forall(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$. Is the binary operation o is commutative \& associative ? Justify.

Solution : Here the binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by $(\mathrm{a}, \mathrm{b}) \circ(\mathrm{c}, \mathrm{d})=(\mathrm{a}-\mathrm{c}, \mathrm{b}-\mathrm{d}) ; \forall(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$.

Step 1 : To examine the commutativity let us take $(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$. Then by defination $(a, b) \circ(c, d)=(a-c, b-d) \&(c, d) \circ(a, b)=(c-a, d-b)=(-(a-c),-(b-d))$ Therefore $(\mathrm{a}, \mathrm{b}) \circ(\mathrm{c}, \mathrm{d}) \neq(\mathrm{c}, \mathrm{d}) \circ(\mathrm{a}, \mathrm{b}) \forall(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$.
This shows that ' o ' is not commutative on $\mathbb{Z} \times \mathbb{Z}$

Step 2 : To examine associativity let us take $(a, b),(c, d),(e, f) \in \mathbb{Z} \times \mathbb{Z}$. Then $(\mathrm{a}, \mathrm{b}) \circ\{(\mathrm{c}, \mathrm{d}) \circ(\mathrm{e}, \mathrm{f})\}=(\mathrm{a}, \mathrm{b}) \circ\{(\mathrm{c}-\mathrm{e}, \mathrm{d}-\mathrm{f})\}$ [by defination] $=(a-c+e, b-d+f)$ [by defination]
Again $\{(a, b) \circ(c, d)\} \circ(e, f)=(a-c, b-d) \circ(e, f)$

$$
=(a-c-e, b-d-f)
$$

Hence $(\mathrm{a}, \mathrm{b}) \circ\{(\mathrm{c}, \mathrm{d}) \circ(\mathrm{e}, \mathrm{f})\} \neq\{(\mathrm{a}, \mathrm{b}) \circ(\mathrm{c}, \mathrm{d})\} \circ(\mathrm{e}, \mathrm{f})(a, b),(c, d),(e, f) \in$ $\mathbb{Z} \times \mathbb{Z}$. Therefore ' o ' is also not associative on $\mathbb{Z} \times \mathbb{Z}$.

Problem 5: A binary operation o is defined on \mathbb{Q}, the set of rational no. by $a \circ b=$ $a b+1 \forall a, b \in \mathbb{Q}$. Is the binary operation o is commutative \& associative ? Justify.

Solution : Here the binary operation o is defined on \mathbb{Q} by

$$
\mathrm{a} o \mathrm{~b}=\mathrm{ab}+1 \quad \forall a, b \in \mathbb{Q}
$$

Step 1 : To examine the commutativity let us take $a, b \in \mathbb{Q}$.
Then $\mathrm{a} o \mathrm{~b}=\mathrm{ab}+1=\mathrm{ba}+1[$ since $\mathrm{ab}=\mathrm{ba} \forall a, b \in \mathbb{Q}]$
= b o a

Thus a o $\mathrm{b}=\mathrm{b}$ o a $\forall a, b \in \mathbb{Q}$. Hence ' o ' is commutative on \mathbb{Q}.
Step 2 : To examine associativity let us take $a, b, c \in \mathbb{Q}$.
Then $a o(b \circ c)=a o(b c+1)=a(b c+1)+1=a b c+a+1 \quad \forall a, b, c \in \mathbb{Q}$.
Again we have $(a \circ b) \circ c=(a b+1) \circ c=(a b+1) c+1=a b c+c+1$
$\forall a, b, c \in \mathbb{Q}$. Hence a o $(b \circ c) \neq(a \circ b)$ oc $\forall a, b, c \in \mathbb{Q}$. Therefore it proves that ' o ' is not associative on \mathbb{Q}.

Problem 6 :

A binary operation o is defined on $M_{2}(\mathbb{R})$, the set of all 2×2 matrices whose elements are real numbers by $\mathrm{A} \circ \mathrm{B}=\frac{1}{2}(A B-B A) \forall A, B \in$ $M_{2}(\mathbb{R})$. Is the binary operation o is commutative \& associative ? Justify .

Solution : Here the binary operation o is defined on $M_{2}(\mathbb{R})$ by

$$
\mathrm{A} \circ \mathrm{~B}=\frac{1}{2}(A B-B A) \forall A, B \in M_{2}(\mathbb{R})
$$

Step 1 : To examine the commutativity let us take $A, B \in M_{2}(\mathbb{R})$

$$
\begin{aligned}
& \text { Then } \mathrm{A} \text { o } \mathrm{B}=\frac{1}{2}(A B-B A) \forall A, B \in M_{2}(\mathbb{R}) \text { and } \\
& \mathrm{B} \text { o } \mathrm{A}=\frac{1}{2}(B A-A B)=-\frac{1}{2}(A B-B A) \forall A, B \in M_{2}(\mathbb{R}) \\
& \text { Therefore } \mathrm{A} \text { o } \mathrm{B} \neq B \text { o } A \forall A, B \in M_{2}(\mathbb{R}) \text {. } \\
& \text { Hence ' } \mathrm{o} \text { ' is not commutative on } M_{2}(\mathbb{R}) \text {. }
\end{aligned}
$$

Step 2: To examine associativity let us take $A, B, C \in M_{2}(\mathbb{R})$. Then

$$
\begin{aligned}
\mathrm{A} \circ(\mathrm{~B} \circ \mathrm{C})=\mathrm{A} \circ \frac{1}{2}(\mathrm{BC}-\mathrm{CB}) & =\frac{1}{2}\left[\frac{1}{2} A(B C-C B)-\frac{1}{2}(\mathrm{BC}-\mathrm{CB}) \mathrm{A}\right] \\
& =\frac{1}{4}[A(B C-C B)-(B C-C B) A] \\
& =\frac{1}{4}[A B C-A C B-B C A+C B A]
\end{aligned}
$$

Again $(\mathrm{A} \circ \mathrm{B}) \circ \mathrm{C}=\frac{1}{2}(A B-B A) \circ C=\frac{1}{2}\left[\frac{1}{2}(A B-B A) C-\frac{1}{2} C(A B-B A)\right]$

$$
\begin{aligned}
& =\frac{1}{4}[(A B-B A) C-C(A B-B A)] \\
& =\frac{1}{4}[A B C-B A C-C A B+C B A] \\
& \neq \frac{1}{4}[A B C-A C B-B C A+C B A]
\end{aligned}
$$

[since matrix multiplication is not commutative in general]
Therefore $\mathrm{A} \circ(\mathrm{B} \circ \mathrm{C}) \neq(\mathrm{A} \circ \mathrm{B}) \circ \mathrm{C} \quad \forall A, B, C \in M_{2}(\mathbb{R})$.
Hence ' o ' is not associative on $M_{2}(\mathbb{R})$.

- The following table will give Comprehensive ideas :

SL.NO	The Given Binary Operation	Nature of Binary operation	
	Commutativity	Associativity	
1	A binary operation o is defined on \mathbb{R} by $\mathrm{a} \circ \mathrm{b}=\mathrm{a}+$ $2 \mathrm{~b} \forall a, b \in \mathbb{R}$	NO	NO
2	A binary operation o is defined on \mathbb{R} by $\mathrm{a} \circ \mathrm{b}=$ $\|\mathrm{ab}\| \forall a, b \in \mathbb{R}$.	Yes	Yes
3	A binary operation o is defined on \mathbb{Z} by $\mathrm{o} \mathrm{ob}=$ $\mathrm{a}+\mathrm{b}+1 \forall a, b \in \mathbb{Z}$.	Yes	Yes

4	A binary operation o is defined on $\mathbb{Z} \times \mathbb{Z}$ by (a, b) $\mathrm{o}(\mathrm{c}, \mathrm{d})=(\mathrm{a}-\mathrm{c}, \mathrm{b}-\mathrm{d}) \forall(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$.	No	NO
5	A binary operation o is defined on \mathbb{Q} by a o $\mathrm{b}=$ $\mathrm{ab}+1 \forall a, b \in \mathbb{Q}$	Yes	NO
6	A binary operation o is defined on $M_{2}(\mathbb{R})$ by A o $\mathrm{B}=\frac{1}{2}(A B-B A) \forall A, B \in M_{2}(\mathbb{R})$	NO	NO

Problem 7 :

Let ' o ' be an associative binary Composition on a Set S. Let T be a subset of S defined by $T=\{a \in S: a o x=x o a \forall x \in S\}$.
Prove that T is closed under ' 0 '.

Solution : Here by given Condition c we have $\mathrm{aox}=\mathrm{xoa} \& \mathrm{box}=\mathrm{xob} \forall x \in S$
Now we have to Prove that T is closed under 'o 'i.e for $a, b \in T$

$$
\Rightarrow a o b \in T
$$

```
Now (aob) o \(x=a o\) ( \(b\) o \(x\) ) [ since o is associative ]
    \(\Rightarrow(a o b) o x=a o(x \circ b) \quad[\) since b o \(\mathrm{x}=\mathrm{x}\) ob \(\forall x \in S]\)
    \(\Rightarrow(a o b) o x=(a \circ x) o b \quad\) [since o is associative ]
    \(\Rightarrow \quad(a o b) o x=(x \circ a) o b \quad[\) since a o \(\mathrm{x}=\mathrm{x}\) o a \(\forall x \in S]\)
    \(\Rightarrow \quad(a o b) \circ x=x \circ(a \circ b)\) [ since o is associative ]
```

Thus we have $(a o b) o x=x o(a \circ b) \forall x \in S$. This implies that $a o b \in T a o b \in T$.Therefore T is closed under 'o' .

Problem 8 :

Let S be a Set of two elements. How many different binary Compositions can be defined on S ? How many different Commutative binary compositions can be defined on S ?

Solution: Here it is given that S be a set of two elements. Now we know that the number of different binary compositions defined on S be $n^{n^{2}}$ where n denotes number of elements.

Therefore the total no. Of different binary compositions defined
On the Set $S=2^{2^{2}}=2^{4}=16$ [Since here $n=2$]

* The total number of different commutative binary

Compositions defined on the set S be $n^{\frac{n(n+1)}{2}}=2^{\frac{2(2+1)}{2}}=$ $2^{3}=8 \quad[$ Since here $n=2$]

■ The associativity \& the Commutativity are independent of each other.

- If G contains n elements then the number of binary operations on G are $n^{n^{2}}$
\square If a set G contains n elements, then the number of commutative binary operations on G are $n^{\frac{n^{2}+n}{2}}$
- If a set G contains n elements, then the number of noncommutative binary operations on G are $n^{n^{2}}-n^{\frac{n^{2}+n}{2}}$.

Exercise :

1. Prove or disprove : Every binary operation on a Set S is both commutative \& associative iff S has exactly one element.
2. Examine the composition 'o' defined on the given set are i) commutative ii) associative .
(a) ' o ' on \mathbb{R} defined by ao $\mathrm{b}=|\mathrm{a}|+|\mathrm{b}| \forall a, b \in \mathbb{R}$.
(b) ' o ' on \mathbb{N}, the set of all natural numbers by $a \mathrm{ob}$ $=$ L.C.M of $\mathrm{a} \& \mathrm{~b} \forall a, b \in \mathbb{N}$
(c) ' o ' on \mathbb{N}, the set of all natural numbers by $\mathrm{a} o \mathrm{~b}=\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \forall a, b \in \mathbb{N}$
(d) 'o' on \mathbb{N}, the set of all natural numbers by $\mathrm{a} o \mathrm{~b}=\max (\mathrm{a}, \mathrm{b}) \quad \forall a, b \in \mathbb{N}$
(e) ' o ' on \mathbb{Z}, the set of all integers by $\mathrm{a} o \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab} \quad \forall a, b \in \mathbb{Z}$
3. Prove or disprove : Every Commutative binary operation on a set G containing two elements is associative.
4. Let S be a set of 5 elements. How many different commutative \& non-commutative binary compositions can be defined on the set S ?

Reference :

1. Joseph A. Gallian , Contemporary Abstract Algebra , $4^{\text {th }}$ Ed. , 1999
2. M K Sen , Shamik Ghosh, Parthasarathi Mukhopadhyay \& Sunil Kumar Maity, Topics in abstract Algebra, Third Edition.
3. SK Mapa , Higher Algebra (Abstract \& Linear).
